
An Efficient Algorithm for Inverting 
a Block-Symmetric Matrix* 

By S. Charmonman 

1. Introduction. A matrix of block-symmetric form is typified by that in the 
theory of directional coupler [3] and in overlapping polymer chains [4], 

(1) ft==[~R =A 

where A and B are real square matrices of order n. In general, when A and B are 
nonsymmetric, the block-symmetric matrix R is also nonsymmetric. One of the best 
methods of inverting a fully populated and nonsymmetric matrix in general is 
Gaussian elimination with partial pivoting. If the block-symmetry of R is disre- 
garded the number of arithmetic operations required in inverting the 2n X 2n 
matrix R by Gaussian elimination would be of order 8n3 multiplications [1, p. 178]. 
If compact elimination is used computer storage required would be of order (2n)2. 

In order to use the block-symmetry of R in its inversion Schur's identity [2] can 
be employed. Let the inverse of R be 

(2) R-ft a 

Schur's identity gives 
Algorithm 1A. To obtain R-1, compute in succession: 
(1) A = A -B(A-IR 
(2) H= A-, 
(3) G =-A-IBA-1 
(4) F =- (A-1B) A-', and 
(5) E = A-' + (A-1B)G. 
If A-1B computed in Step (1) is saved to be used again in Steps (4) and (5), 

the total operations required to obtain f-1 are two inversions, six multiplications 
and two additions of matrices of order n. The corresponding number of scalar 
multiplications is thus of order 8n3 which is about the same as in using Gaussian 
elimination on R without regarding the block-symmetry. 

It can be easily verified that E = H and F = G. Therefore an alternative to 
Algorithm 1A could be 

Algorithm 1B. To obtain R-1, compute in succession: 
(1) E = H = (A - BA-B)- and 
(2) F = G = (B - AB-'A)-'. 
Although Algorithm 1B appears to be more compact than Algorithm 1A the 

number of multiplication required is about the same, that is, of order 8n3 for four 
inversions, four multiplications and two additions of matrices of order n. 
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2. An Efficient Algorithm. A more efficient algorithm can be devised by use of 
THEOREM 1. The inverse of 

(B A) i (F E) 

where E = .5(P-' + Q-1), F = .5(P' - Q-1), P = A + B and Q = A - 2B. 
A proof can be easily constructed by equating terms of the product RR-' to 

those of I. The algorithm obtained is 
Algorithm 2. To obtain R-1, compute in succession: 
(1) P -A + B, Q = P - 2B, 
(2) P-', Q-l, 
(3) E = .5(P-' + Q-1) and F = E - Q-1. 
Algorithm 2 is more efficient than Algorithms 1A and lB in the sense that there 

are savings in both computer storage and the number of arithmetic operations re- 
quired. Computer storage required is of order 2n2, say two n X n arrays whose 
contents are shown in Table 1. 

TABLE 1 

Contents of Arrays in Inversion Algorithm 2 

Step 
Array 0 1 2 3 

1 A P = A + B p-' E = .5(P-1 + Q-) 
2 B Q = P-2B Q-1 F = E-Q-1 

In each step, computation is carried out first in the first array and then in the 
second array. The total number of multiplications required is only of order 2n3, 
that is, in carrying out two inversions, two additions of matrices of order n, and 
two multiplications of a scalar to a matrix of order n. Therefore the saving in arith- 
metic operations in using Algorithm 2 instead of Algorithms 1A or 1B is about 75'%. 

3. Solution of a System of Equations. If only one system of equations is to be 
solved, it is better to find the solution without actually computing the inverse than 
by multiplication of the inverse to the right-hand side. In this case the number of 
scalar multiplications required in applying Gaussian elimination with partial pivot- 
ing directly to Rx = b is of order 8n3/3 [1, p. 176]. A more efficient approach similar 
to that in Algorithm 2 is based on 

THEOREM 2. The solution of 

FA Bf X] =b 
LB Al _X2_ _b22 

is xi = .5(yl + y2) and X2 = .5(Yl - Y2) where y, and y2 are solutions of (A + B)yi 
= bl + b2 and (A - B)y2 = - b2 respectively. 

A proof is again obvious. The resulting algorithm is shown in Table 2. The com- 
puter storage is two n(n + 1) arrays. Broken vertical bars are used to indicate par- 
titioned matrices. 
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TABLE 2 

Solution of One System Equations 

Step 

Array 0 1 2 3 

1 A I bi P=A+B I c1=bl+b2 Solve Py, = cl xi = .5(yl + y2) 
2 B1 Wb2 Q = P-2B C2=c1-2b2 SolveQy2 = C2 X2 = Xl-y2 
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A Note on the Effect of 
Conditionally Stable Correctors 

By Fred T. Krogh 

We say a corrector of the form 
k-1 k-1 

(1) tYn? = E Aiyi + h ai ay'-i 

is conditionally stable if the polynomial 
k-1 

(2) p(Z) = Zk - E AiZk--i 
i=o 

has all of its roots in the unit disk, roots of unit magnitude are simple, and there is 
at least one root of unit magnitude besides the root z = 1 (which must be a root 
since it is assumed that Eq. (1) is satisfied if y is a constant). In [1], Stetter ob- 
tains the remarkable result that a predictor-corrector algorithm using Simpson's 
rule (a conditionally stable corrector) will be relatively stable* for sufficiently small 
h provided the predictor is chosen judiciously and the corrector is only applied 
once. However, his result applies only to the integration of a single differential 
equation. It is the purpose of this note to point out that no result of this type can 
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used here seem to the author to be most descriptive. Different words are used in [1]. Several 
definitions of "relatively stable" are given below. In practice they are essentially equivalent. 


